Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption of epithelial tight junctions.

نویسندگان

  • K J Atkinson
  • R K Rao
چکیده

Acetaldehyde-induced cytotoxicity is an important factor in pathogenesis of alcohol-related diseases; however, the mechanism of this toxicity is unknown. We recently showed that acetaldehyde increases epithelial paracellular permeability. We asked whether protein tyrosine phosphorylation via modulation of tyrosine kinases and/or PTPases is a mechanism involved in acetaldehyde-induced disruption of the tight junctions in the Caco-2 cell monolayer. Immunofluorescence localization of occludin and ZO-1 showed disruption of the tight junctions in acetaldehyde-treated cell monolayer. Administration of genistein prevented acetaldehyde-induced permeability. Acetaldehyde increased tyrosine phosphorylation of three clusters of proteins with molecular masses of 30-50, 60-90, and 110-150 kDa; three of these proteins were ZO-1, E-cadherin, and beta-catenin. Acetaldehyde reduced PTPase activity in plasma membrane and soluble fractions, whereas tyrosine kinase activity remained unaffected. Treatment with acetaldehyde resulted in a 97% loss of protein tyrosine phosphatase (PTP)1B activity and a partial reduction of PTP1C and PTP1D activities. These results strongly suggest that acetaldehyde inhibits PTPases to increase protein tyrosine phosphorylation, which may result in disruption of the tight junctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolay...

متن کامل

L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer.

Role of L-glutamine in the protection of intestinal epithelium from acetaldehyde-induced disruption of barrier function was evaluated in Caco-2 cell monolayer. L-Glutamine reduced the acetaldehyde-induced decrease in transepithelilal electrical resistance and increase in permeability to inulin and lipopolysaccharide in a time- and dose-dependent manner; d-glutamine, L-aspargine, L-arginine, L-l...

متن کامل

Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine.

Acetaldehyde, a toxic metabolite of ethanol oxidation, is suggested to play a role in the increased risk for gastrointestinal cancers in alcoholics. In the present study, the effect of acetaldehyde on tyrosine phosphorylation, immunofluorescence localization, and detergent-insoluble fractions of the tight junction and the adherens junction proteins was determined in the human colonic mucosa. Th...

متن کامل

ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers.

The role of mitogen-activated protein kinases (MAPK) in the mechanism of EGF-mediated prevention of acetaldehyde-induced tight junction disruption was evaluated in Caco-2 cell monolayers. Pretreatment of cell monolayers with EGF attenuated acetaldehyde-induced decrease in resistance and increase in inulin permeability and redistribution of occludin, zona occludens-1 (ZO-1), E-cadherin, and β-ca...

متن کامل

Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers.

Evidence indicates that PP2A (protein phosphatase 2A) interacts with epithelial tight junctions and negatively regulates the integrity of the tight junction. In the present study, the role of PP2A in the hydrogen peroxide-induced disruption of the tight junction was examined in Caco-2 cell monolayers. Hydrogen peroxide-induced decrease in electrical resistance and increase in inulin permeabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 280 6  شماره 

صفحات  -

تاریخ انتشار 2001